
Journal of Applied Mechanics and Technical Physics, Vol. 47, No. 4, pp. 573–581, 2006

NUMERICAL ANALYSIS OF FREE VIBRATIONS

OF A BEAM WITH OSCILLATORS

UDC 519.632.4S. D. Algazin

The problem of free vibrations of a beam with free ends of variable cross section and mass, from
which point masses (oscillators) are suspended by bars, is considered. It is shown that parametric
resonances can occur in this oscillating system. Numerical examples showing the efficiency of the
calculation method proposed are given.
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Introduction. The eigenvalue problems for the case where the solutions of the corresponding equations are
smooth functions are considered in [1]. Some mathematical physics problems, however, lead to eigenvalue problems
with piecewise-smooth functions (see below). In the present paper, the results of [1] are generalized to problems
with piecewise-smooth functions. The error of the method proposed is estimated in [2]. Longitudinal vibrations
of a bar are considered in [3]. The present paper deals with transverse vibrations of a beam with oscillators. The
Fortran codes are given in [4].

1. Formulation of the Problem. We consider a beam (0 � x � a) with free ends. At the points x = xk

(k = 1, 2, . . . , n) of the beam, point masses mk (oscillators) are suspended by weightless bars of length lk (parallel
to the beam axis at the initial time) in such a manner that a bar with a mass rotating through a small angle relative
to the tangent to the beam axis at the suspension point generates a moment proportional to the rotation angle with
a coefficient ck, which tends to bring the mass to the initial position.

We assume that the bars with masses are rigid bodies and the beam is an elastic body with a flexural rigidity
EIx(x) and mass per unit length of the beam m(x). The vibrations are assumed to be infinitely small, so that the
point masses perform vibrations in the plane normal to the neutral axis of the beam. We derive the free-vibration
equations for this mechanical system.

First, we consider the forces exerted on the beam by a bar with a mass. If the angle ϕ is small so that the
quantities ϕ2 can be ignored, then sinϕ ≈ ϕ and cosϕ ≈ 1;, hence, the mass performs oscillations in the plane
normal to the neutral axis of the beam. It follows that the reaction force acting on the beam at the suspension
point x = xk is perpendicular to the beam axis.

Thus, the beam is subjected to the load

f(x, t) = Mδ′(x − x0) + Rδ(x − x0).

We assume that the moment −M acting on a bar with a mass is proportional to the angle between the bar and
the tangent to the neutral axis at the suspension point and is directed in such a manner that it tends to bring the
mass back to the initial position.

Denoting the deflection by v(x), we write the beam bending equation as

(EIxv′′)′′ = Mδ′(x − x0) + Rδ(x − x0).
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Introducing the inertia forces into the beam dynamic equation, we obtain

∂2

∂x2

(
EIx

∂2v

∂x2

)
+ m(x)

∂2v

∂t2
= Rδ(x − x0) + Mδ′(x − x0),

where m(x) is the mass per unit length.
Next, we obtain geometrical relations. Let z0 be the amplitude of the oscillator, i.e., the distance from the

mass and the x axis (neutral axis of the beam in the initial state) and y0 be the amplitude of the suspension point.
Then, we have

(z − y0)/l0 = sin ϕ ≈ ϕ, z0 = y0 + l0ϕ,

for the right location of the oscillator and

(z − y0)/l0 = sin (π − ϕ) = sin ϕ ≈ ϕ, z0 = y0 + l0ϕ

for the left location of the oscillator.
Taking into account the sign of ϕ (the positive angle ϕ is counted anticlockwise), we obtain

z0 = y0 ∓ l0ϕ (1.1)

(the plus and minus signs refer to the oscillator located on the left and on the right, respectively).
The equations of motions of the oscillator about the suspension point are written as

m0l
2
0ϕ̈ = −M ± m0ÿ0l0.

Here −M is the moment of forces exerted on the beam by the oscillator, ±m0ÿ0l0 is the moment of inertia forces
about the point x = x0 (the plus and minus signs refer to the oscillator located on the right and on the left,
respectively). If ÿ0 > 0, the inertia force is directed upward and generates a positive moment for the right location
of the oscillator and a negative moment for its left location.

From (1.1), we obtain z̈0 = ÿ0∓ l0ϕ̈. Consequently, −m0ÿ0l0 = −m0z̈0l0∓m0l
2
0ϕ̈. The equation m0z̈0 = −R

is the equation of motion of the center of mass. Thus, we have

m0l
2
0ϕ̈ = −M ∓ Rl0 + m0l

2
0ϕ̈,

i.e.,

M = ∓Rl0 (1.2)

(the plus and minus signs refer to the oscillator located on the left and on the right, respectively).
The problem considered should be supplemented with the free-vibration equation of the beam with oscillators.

We assume that the bar with a mass is subjected to a moment proportional to the angle ϕ− y′(x0), which tends to
bring the mass back:

M = cϕ(ϕ − y′(x0)) = cϕ(z − y0 ∓ l0y
′(x0))/(∓l0).

Then,

R = ∓M/l0 = cϕ(z − y0 ∓ l0y
′(x0))/l20.

Using the equation of motion of the oscillator m0z̈0 = −R, we obtain the free-vibration equation for the
oscillator

−λz0 = −λ0(z0 − y0 ∓ l0y
′(x0)), λ0 = cϕ/(m0l

2
0). (1.3)

We derive the equations governing free vibrations of the beam

d2

dx2

(
EIx

d2y

dx2

)
= λmy + Rδ(x − x0) + Mδ′(x − x0), (1.4)

where

Rδ(x − x0) + Mδ′(x − x0) = R(δ(x − x0) ∓ l0δ
′(x − x0))

= cϕ(z − y0 ∓ l0y
′(x0))(δ(x − x0) ∓ l0δ

′(x − x0))/l20.
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For n oscillators, we obtain the equations of free vibrations

d2

dx2

(
EIx

d2y

dx2

)
= λmy + λ

n∑
k=1

mkzk(δ(x − x0) − lkδ′(x − x0)); (1.5)

−λzk = λk(yk − zk + lky′
k), k = 1, 2, . . . , n. (1.6)

Here lk > 0 if the oscillator is on the right and lk < 0 if it is on the left,

EIxy′′
∣∣∣ x=0
x=a

= 0; (1.7)

(EIxy′′)′
∣∣∣ x=0
x=a

= 0. (1.8)

Equations (1.2)–(1.8) give the desired formulation of the problem of free vibrations of a beam with oscillators.
2. Integral Equation. Let p(x) ≡ EIx. The solvability conditions of Eq. (1.5) are

λ

a∫

0

m(ξ)y(ξ) dξ + λ
∑

k

mkzk = 0 (2.1)

(the sum of the forces applied to the beam vanishes) and

λ

a∫

0

ξm(ξ)y(ξ) dξ + λ
∑

k

mkzk(xk + lk) = 0 (2.2)

(the sum of the moments applied to the beam vanishes).
We introduce the Green function Û(x, ξ) as the solution of the problem

d2

dx2
p(x)

d2

dx2
Û(x, ξ) + ĉ0(ξ) + xĉ1(ξ) = δ(x − ξ); (2.3)

p(x)
d2

dx2
Û(x, ξ)

∣∣∣ x=0
x=a

= 0; (2.4)

d

dx
p(x)

d2

dx2
Û(x, ξ)

∣∣∣ x=0
x=a

= 0 (2.5)

subject to the orthogonality condition for and absolutely rigid displacement
a∫

0

m(x)Û (x, ξ) dx = 0,

a∫

0

xm(x)Û (x, ξ) dx = 0. (2.6)

The functions ĉ0(ξ) and ĉ1(ξ) are chosen so that the system of forces applied to the beam is in equilibrium.
Thus, we have two elastic systems (1.5)–(1.8) and (2.3)–(2.6). Using Betti’s reciprocal theorem, we obtain

the integral representation of the solution

y(x) = λ

a∫

0

Û(x, ξ)m(ξ)y(ξ) dξ + λ

n∑
k=1

mkzk(Û(x, xk) + lkÛ ′
ξ(x, xk)) + c2x + c1. (2.7)

The constants c1 and c2 are chosen so as to satisfy the solvability conditions (2.1) and (2.2). Thus, we have two
relations for determining c1 and c2:

a∫

0

m(x)(c2x + c1) dx = −
n∑

k=1

mkzk ≡ f1,

a∫

0

xm(x)(c2x + c1) dx = −
n∑

k=1

mkzk(xk + lk) ≡ f2.
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Consequently, (
α11 α12

α21 α22

)(
c1

c2

)
=

(
f1

f2

)
,

where α11 =

a∫

0

m(x) dx, α12 = α21 =

a∫

0

xm(x) dx, and α22 =

a∫

0

x2m(x) dx.

Let β = α−1, i.e.,
(

β11 β12

β21 β22

)
=

(
α11 α12

α21 α22

)−1

.

Then,

c1 = β11f1 + β12f2, c2 = β21f1 + β22f2,

where β11 = α12/ detα, β21 = β12 = −α12/ detα, β22 = α11/ detα, and detα = α11α22 − α2
12. Hence, we have,

c2x + c1 = (β21f1 + β22f2)x + β11f1 + β12f2

= (β21x + β11)
(
−

n∑
k=1

mkzk

)
+ (β22x + β12)

(
−

n∑
k=1

mkzk(xk + lk)
)
.

Thus, the amplitudes y(x) and z1, . . . , zn are determined from the system of integro-algebraic equations

y(x) + (β21x + β11)
n∑

k=1

mkzk + (β22x + β12)
n∑

k=1

mkzk(x∗
k + lk)

= λ

a∫

0

Û(x, ξ)m(ξ)y(ξ) dξ + λ

n∑
k=1

mkzk(Û(x, x∗
k) + lkÛ ′

ξ(x, x∗
k)); (2.8)

−λzk = λk(yk − zk + lky′
k), k = 1, 2, . . . , n (2.9)

(x∗
k is the suspension point of the kth oscillator).

3. Structure of the Finite-Dimensional Problem. Differentiating (2.8), we obtain the supplementary
relations for y′(x):

y′(x) = −β21

n∑
k=1

mkzk − β22

n∑
k=1

mkzk(x∗
k + lk) + λ

a∫

0

Û ′
x(x, ξ)m(ξ)y(ξ) dξ

+ λ
n∑

k=1

mkzk(Û ′
x(x, x∗

k) + lkÛ ′′
ξx(x, x∗

k)). (3.1)

Calculating the integral terms in (2.8) and (3.1) by the quadrature formula [3], we arrive at the finite-dimensional
problem

E

⎛
⎝

Y

Y ′

z

⎞
⎠ = λD

⎛
⎝

Y

Y ′

z

⎞
⎠ .

Here Y = (y(x1), . . . , y(xN ))t is the vector of the values of the eigenfunction at the interpolation nodes, Y ′

= (y′(x∗
1), . . . , y

′(x∗
n))t, z = (z1, . . . , zn)t,

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

(N × N) (N × n) (N × n)
IN 0 β̂

(n × N) (n × n) (n × n)
0 In β∗

(n × N) (n × n) (n × n)
J −LΛ Λ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.2)
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IN and In are the unit matrices of order N × N and n × n, respectively, β̂pk = (β21xp + β11)mk + (β22xp

+β12)mk(x∗
k + lk), β21 = β12 and, hence, β̂pk = β12(xp +x∗

k)mk +β11mk +β22xpx
∗
kmk +β22xpmklk +β12mklk, β∗ is

an n × n matrix with equal columns β21(mk + β22mk(x∗
k + lk)) (k = 1, 2, . . . , n), J is an n × N matrix whose kth

row (k = 1, 2, . . . , n) has the only nonzero j(k)th component equal to −λk [j(k) is an integer function that relates
the oscillator number k to the node number of the mesh], L = diag (l1, . . . , ln), Λ = diag (λ1, . . . , λn),

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

(N × N) (N × n) (N × n)
A 0 U

(n × N) (n × n) (n × n)
Ax 0 Ux

(n × N) (n × n) (n × n)
0 0 In

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A is an N × N matrix, Apk = ckÛ(xp, xk), Û is the Green function, ck are the coefficients of the quadrature
formula [3], U is an N × n matrix, Upk = mk(Û(xp, x

∗
k) + lkÛ ′

ξ(xp, x
∗
k)), x∗

k are the suspension points of the
oscillators, Û ′

ξ is the derivative of the Green function with respect to the second argument, Ax is an n×N matrix,
Axpk = ckÛ ′

x(x∗
p, xk), x∗

p are the suspension points of the oscillators, Û ′
x is the derivative of the Green function with

respect to the first argument, Ux is an n× n matrix, Uxpk = mk(Û ′
x(x∗

p, x
∗
k) + lkÛ ′′

ξx(x∗
p, x∗

k)), and Û ′′
ξx is the second

derivative of the Green function.
Thus, one needs a computer code to calculate the Green functions

Û(x, ξ) =
{

(f2(ξ), Âf1(x)), x � ξ,

(f2(x), Âf1(ξ)), x � ξ

and its derivatives Ûx, Ûξ, and Ûξx (the four-component vectors f1 and f2 and the 4× 4 matrix Â are constructed
from 8 arrays and 8 constants calculated using the code).

The matrices U , Ax, and Ux are calculated using the Green functions constructed above.
Writing out the matrices E and D, we note that the structure of the matrix E is similar to that of the

matrix E for the longitudinal vibrations of a bar [3] and, hence, it can be inversed analytically. It follows from [3]
that one should inverse the matrix Λ − J∗m∗, where

J∗m∗ = (J − LΛ)
(

β̂

β∗

)
= Jβ̂ − LΛβ∗.

Further, we obtain

Jβ̂ = −Λ

⎛
⎜⎜⎝

βJ(1),1 βJ(1),2 . . . βJ(1),n

βJ(2),1 βJ(2),2 . . . βJ(2),n

. . . . . . . . . . . .

βJ(n),1 βJ(n),2 . . . βJ(n),n

⎞
⎟⎟⎠ = −Λβ̂.

This matrix is obtained from β̂ by replacing xp by x∗
p (i.e., suspension points of the oscillators). To inverse this

matrix, we consider the inversion of the matrix In + m̂ for longitudinal vibrations of the bar [3]:

m̂ =
1
l

⎛
⎜⎜⎝

m1 m2 . . . mn

m1 m2 . . . mn

. . . . . . . . . . . .

m1 m2 . . . mn

⎞
⎟⎟⎠ =

1
l

⎛
⎜⎜⎝

1
1
. . .

1

⎞
⎟⎟⎠ (m1 m2 . . . mn).

This matrix has a single eigenvector (1, 1, . . . , 1)t and a corresponding eigenvalue (1/l)
∑

mi. The matrix m̂ is a
projector (with accuracy to a scalar multiplier). The matrix m̂ transforms any vector x to a vector collinear to
(1, 1, . . . , 1)t.

Thus, we have

(In + m̂)−1 = In − 1

1 + (1/l)
∑

mi

m̂,

since m̂2 =
(
(1/l)

∑
mi

)
m̂ = λm̂.
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Denoting the eigenvalue of the matrix m̂ (n is multiple) by λ, we obtain

(In + m̂)−1 = In − 1
λ + 1

m̂.

How can this formula be generalized to the case of a projector to a two-dimensional subspace?
Statement 1. If m̂2 = λm̂, then

(In + m̂)−1 = In − 1
λ + 1

m̂.

For transverse vibrations of the beam, one should inverse the n × n matrix I + β̂∗ with allowance for
β̂∗ = β̂(1) + β̂(2), where

β̂
(1)
pk = (β21(x∗

p + lp) + β11)mk,

(β̂(1))2 = λ1β̂
(1), λ1 =

n∑
k=1

mk(β21(x∗
k + lk) + β11);

(3.3)

β̂
(2)
pk = (β22(x∗

p + lp) + β12)mk(x∗
k + lk),

(β̂(2))2 = λ2β̂
(2), λ2 =

n∑
k=1

mk(x∗
k + lk)(β22(x∗

k + lk) + β12);
(3.4)

β̂(2)β̂(1) = λ21β̂
(2)Q−1, λ21 =

n∑
k=1

mk(x∗
k + lk)(β21(x∗

k + lk) + β12),

β̂(1)β̂(2) = λ12β̂
(1)Q−1, λ12 =

n∑
k=1

mk(β22(x∗
k + lk) + β12), (3.5)

Q = diag (x∗
1 + l1, . . . , x

∗
n + ln).

Using these relations, we obtain

(I + β̂∗)−1 = (I + β̂(1) + β̂(2))−1 = (I + (I + β̂(1))−1β̂(2))−1(I + β̂(1))−1

=
(
I +

(
I − 1

λ1 + 1
β̂(1)β̂(2)

)−1)(
I − 1

λ1 + 1
β̂(1)

)
,

(
I − 1

λ1 + 1
β̂(1)β̂(2)

)−1

=
(
I + β̂(2) − λ12

1 + λ1
β̂(1)Q

)−1

.

We introduce the notation

β̂(3) = β̂(2) − λ12

1 + λ1
β̂(1)Q =

(
β22(x∗

p + lp) + β12 − λ12

1 + λ1
(β21(x∗

p + lp) + β11)
)
mk(x∗

k + lk),

(β̂(3))2 = λ3β̂
(3), (3.6)

λ3 =
n∑

k=1

((
β22(x∗

k + lk) + β12 − λ12

1 + λ1
(β21(x∗

k + lk) + β11)
)
mk(x∗

k + lk)
)
.

Then, (. . .)−1 = I − β̂(3)/(λ3 + 1). As a result, we obtain

(I + β̂∗)−1 =
(
I − 1

λ3 + 1
β̂(3)

)(
I − 1

1 + λ1
β̂(1)

)

= I − 1
λ3 + 1

β̂(3) − 1
1 + λ1

β̂(1) +
β̂(3)β̂(1)

(λ3 + 1)(λ1 + 1)
.
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The quantities entering this formula are determined in (3.3)–(3.6). We introduce the notation

λ31 =
n∑

q=1

mq(x∗
q + lq)(β21(x∗

q + lq) + β11).

Then, we have

(I + β̂∗)−1
pk = δpk − mk

λ1 + 1
(β21(x∗

p + lp) + β11)

+
mk

λ3 + 1

( λ31

λ1 + 1
− x∗

k − lk

)(
β22(x∗

p + lp) + β12 − λ12

1 + λ1
(β21(x∗

p + lp) + β11)
)
,

δpk =
{

1, p = k,

0, p �= k.

The matrix E is determined by (3.2). Introducing the notation

J∗ = (J − LΛ), m∗ =
(

β̂

β∗

)
,

after the formal replacement (J → J∗, m → m∗ and N → N + n), we find that this matrix is of the same form as
the matrix E for longitudinal vibrations of the bar [3]. As a result, we obtain

E−1 =

⎛
⎝

IN + β̂Λ̂∗J −β̂Λ̂∗LΛ −β̂Λ̂∗

β∗Λ̂∗J In − β∗Λ̂∗LΛ −β∗Λ̂∗

−Λ̂∗J Λ̂∗LΛ Λ̂∗

⎞
⎠ ,

E−1D =

⎛
⎝

(IN + β̂Λ̂∗JA) − β̂Λ̂∗LΛAx 0 (IN + β̂Λ̂∗J)U − β̂Λ̂∗LΛUx − β̂Λ̂∗

Ax 0 Ux

−Λ̂∗JA + Λ̂∗LΛAx 0 −Λ̂∗JU + Λ̂∗LΛUx + Λ̂∗

⎞
⎠ ,

where Λ̂∗ = (I + β̂∗)−1Λ−1. Interchanging the second and third columns, we interchange the second and third rows
to preserve similarity. As a result, we obtain

E−1D =

⎛
⎝

(IN + β̂Λ̂∗JA) − β̂Λ̂∗LΛAx (IN + β̂Λ̂∗J)U − β̂Λ̂∗LΛUx − β̂Λ̂∗

−Λ̂∗JA + Λ̂∗LΛAx −Λ̂∗JU + Λ̂∗LΛUx + Λ̂∗

Ax Ux

⎞
⎠ .

The zero last column is not written. The eigenvector of this matrix is (Y, z, Y ′)t, i.e., the desired 2×2 block matrix
occupies the upper left corner.

4. Numerical Results. In the numerical analysis, the equations given above were nondimensionalized. The
characteristic mass and length were the mass of the beam without oscillators and the beam length. The characteristic
time was the quantity 1/Wmax, where Wmax is the characteristic frequency in Hz (maximum frequency considered).
Calculations were performed to demonstrate the efficiency of the method proposed and to study the occurrence of
the parametric resonance in the complex oscillating system considered.

Example 1. A steel beam of circular cross section is considered: E = 2.1 · 106 kg/cm2, ρ

= 7.8/981 g · sec2/cm4, a = 10 m, and R = 0.1 m. In this example and below, the range of calculations is
0–30 Hz, i.e., the characteristic time is 1/30 sec. Parameters that enter the beam-vibration equation have the
following dimensionless values: EIx = 0.0293461 and m = 1.0. The dimensionless value of the squared circular
frequency of the system was calculated to be λ = (2πw/wmax)2.

In Example 1, four oscillators with masses m1 = 0.1, m2 = 0.7, m3 = 0.7, and m4 = 0.1 are suspended at
the points x1 = 0.2, x2 = 0.4, x3 = 0.6, and x4 = 0.8 from bars of lengths l1 = 0.5, l2 = 0.1, l3 = 0.1, and l4 = 0.5,
respectively. All frequencies of the oscillators are identical: λ1 = λ2 = λ3 = λ4 = π2/25 = 0.3948, i.e., equal to
3 Hz.

The dimensionless values of the squared circular frequency are listed in Table 1. The last column (mesh with
99 nodes) contains the values with six significant figures, and the other columns contain correspondingly rounded-off
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TABLE 1

Eigenvalue
No.

N = 9 N = 19 N = 39 N = 79 N = 99

1 0.3724 0.37224 0.37220 0.372196 0.372195
2 0.385826 0.385825 0.385825 0.385824 0.385824
3 0.5476 0.546973 0.54680 0.546760 0.546754
4 1.267 1.2656 1.2653 1.26522 1.26522
5 19 17 17 16.82 16.8000
6 129 121 116 114.8 114.620
7 665 504 451 436 434.111
8 1817 1427 1247 1194 1187.46

TABLE 2

Oscillator
No.

λ = 0.372195 λ = 0.385824 λ = 0.546754 λ = 1.265220

N = 99 N = 9 N = 99 N = 9 N = 99 N = 9 N = 99 N = 9

1 1.000000 1.000000 0.470687 0.463 0.188009 0.18 0.422319 0.43
2 −0.06630089 −0.665 0.383055 0.38301 −0.470454 −0.469 0.287537 0.29
3 −0.00477738 −0.49 −0.608918 −0.608 −0.0248762 −0.0241 0.462628 0.47
4 −0.308042 −0.307 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

TABLE 3

Eigenvalue
No.

N = 9 N = 19 N = 39 N = 79 N = 99

1 11.3 11.0 10.93 10.906 10.9030
2 22.51 22.49 22.46 22.456 22.4547
3 — — — 340.7 339.737
4 — — — 398 396.732
5 — — — 1068 1066.44
6 — — — 2632 2639.62
7 — — — — 4820.27
8 — — — — 9162.91

Note. The dashes mean that calculations on the corresponding
meshes were not performed.

eigenvalues. Results in Tables 2 and 3 are arranged in a similar manner. The amplitudes of the oscillators obtained
for the data of Table 1 are listed in Table 2.

Example 2. A round beam of variable cross section is considered: E = 2.1 · 106 kg/cm2, ρ =
7.8/981 g · sec2/cm4, a = 10 m (a = a1 + a2 + a3), a1 = a3 = 3 m, a2 = 4 m, and R = 0.1 m. The dimen-
sionless values of flexural rigidity are equal to 0.0293461 for the first and third segments and 2.25 for the second
segment. The dimensionless values of the mass are equal to 0.666666 for the first and third segments and 1.5 for the
second segment. Location of the oscillators, their masses, and the lengths of the bars are the same as in Example 1,
whereas the dimensionless frequencies are different: λ1 = λ2 = λ3 = λ4 = 100π = 986.9600, i.e., the dimensional
value is 150 Hz. The calculated eigenvalues are listed in Table 3.

The results obtained show that the model proposed above can be used to study the occurrence of the
parametric resonance in a vibrating beam with free ends of variable cross section and mass from which point masses
are suspended by bars.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00250).
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